A standardized workflow for surveying recombinases expands bacterial genome‐editing capabilities
نویسندگان
چکیده
Bacterial recombineering typically relies on genomic incorporation of synthetic oligonucleotides as mediated by Escherichia coli λ phage recombinase β - an occurrence largely limited to enterobacterial strains. While a handful of similar recombinases have been documented, recombineering efficiencies usually fall short of expectations for practical use. In this work, we aimed to find an efficient Recβ homologue demonstrating activity in model soil bacterium Pseudomonas putida EM42. To this end, a genus-wide protein survey was conducted to identify putative recombinase candidates for study. Selected novel proteins were assayed in a standardized test to reveal their ability to introduce the K43T substitution into the rpsL gene of P. putida. An ERF superfamily protein, here termed Rec2, exhibited activity eightfold greater than that of the previous leading recombinase. To bolster these results, we demonstrated Rec2 ability to enter a range of mutations into the pyrF gene of P. putida at similar frequencies. Our results not only confirm the utility of Rec2 as a Recβ functional analogue within the P. putida model system, but also set a complete workflow for deploying recombineering in other bacterial strains/species. Implications range from genome editing of P. putida for metabolic engineering to extended applications within other Pseudomonads - and beyond.
منابع مشابه
Advancing Chimeric Antigen Receptor-Engineered T-Cell Immunotherapy Using Genome Editing Technologies: Challenges and Future Prospects
Chimeric antigen receptor engineered-T (CAR-T) cells also named as living drugs, have been recently known as a breakthrough technology and were applied as an adoptive immunotherapy against different types of cancer. They also attracted widespread interest because of the success of B-cell malignancy therapy achieved by anti-CD19 CAR-T cells. Current genetic toolbox enabled the synthesis of CARs ...
متن کاملThe new genomic editing system (CRISPR)
Over the past decades, progression in genetic element manipulation, and consequently, the treatment of diseases has been remarkable. It is worth noting that these genetic manipulations perform at different levels, including DNA and RNA. The earlier genomic editing techniques, including MN, ZFN , TALEN , performing their functions by creating double-stranded breaks (DSBs), and after breakage, th...
متن کاملDevelopment of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9
BACKGROUND Microbial genome editing is a powerful tool to modify chromosome in way of deletion, insertion or replacement, which is one of the most important techniques in metabolic engineering research. The emergence of CRISPR/Cas9 technique inspires various genomic editing methods. RESULTS In this research, the goal of development of a fast and easy method for Escherichia coli genome editing...
متن کاملBxb1 phage recombinase assists genome engineering in Drosophila melanogaster.
Rapid and reliable genome modifications provide the basis for detailed in vivo functional analysis of any genomic entity (gene, regulatory DNA, non-coding RNA, etc). With the advent of CRISPR/Cas9 genome editing technology, manipulation of a particular genomic locus has become a routine undertaking in variety of model organisms, including the fruit fly Drosophila melanogaster. To further divers...
متن کاملRedesigning Recombinase Specificity for Safe Harbor Sites in the Human Genome
Site-specific recombinases (SSRs) are valuable tools for genetic engineering due to their ability to manipulate DNA in a highly specific manner. Engineered zinc-finger and TAL effector recombinases, in particular, are two classes of SSRs composed of custom-designed DNA-binding domains fused to a catalytic domain derived from the resolvase/invertase family of serine recombinases. While TAL effec...
متن کامل